110 research outputs found

    Program Comprehension: Identifying Learning Trajectories for Novice Programmers

    Get PDF
    This working group asserts that Program Comprehension (PC) plays a critical part in the writing process. For example, this abstract is written from a basic draft that we have edited and revised until it clearly presents our idea. Similarly, a program is written in an incremental manner, with each step being tested, debugged and extended until the program achieves its goal. Novice programmers should develop their program comprehen- sion as they learn to code, so that they are able to read and reason about code while they are writing it. To foster such competencies our group has identified two main goals: (1) to collect and define learning activities that explicitly cover key components of program comprehension and (2) to define possible learning trajectories that will guide teachers using those learning activities in their CS0/CS1 or K-12 courses. [...

    Top-down contingent feature-specific orienting with and without awareness of the visual input

    Get PDF
    In the present article, the role of endogenous feature-specific orienting for conscious and unconscious vision is reviewed. We start with an overview of orienting. We proceed with a review of masking research, and the definition of the criteria of experimental protocols that demonstrate endogenous and exogenous orienting, respectively. Against this background of criteria, we assess studies of unconscious orienting and come to the conclusion that so far studies of unconscious orienting demonstrated endogenous feature-specific orienting. The review closes with a discussion of the role of unconscious orienting in action control

    Reflection groups in hyperbolic spaces and the denominator formula for Lorentzian Kac--Moody Lie algebras

    Full text link
    This is a continuation of our "Lecture on Kac--Moody Lie algebras of the arithmetic type" \cite{25}. We consider hyperbolic (i.e. signature (n,1)(n,1)) integral symmetric bilinear form S:M×M→ZS:M\times M \to {\Bbb Z} (i.e. hyperbolic lattice), reflection group W⊂W(S)W\subset W(S), fundamental polyhedron \Cal M of WW and an acceptable (corresponding to twisting coefficients) set P({\Cal M})\subset M of vectors orthogonal to faces of \Cal M (simple roots). One can construct the corresponding Lorentzian Kac--Moody Lie algebra {\goth g}={\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) which is graded by MM. We show that \goth g has good behavior of imaginary roots, its denominator formula is defined in a natural domain and has good automorphic properties if and only if \goth g has so called {\it restricted arithmetic type}. We show that every finitely generated (i.e. P({\Cal M}) is finite) algebra {\goth g}^{\prime\prime}(A(S,W_1,P({\Cal M}_1))) may be embedded to {\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) of the restricted arithmetic type. Thus, Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type is a natural class to study. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type have the best automorphic properties for the denominator function if they have {\it a lattice Weyl vector ρ\rho}. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type with generalized lattice Weyl vector ρ\rho are called {\it elliptic}Comment: Some corrections in Sects. 2.1, 2.2 were done. They don't reflect on results and ideas. 31 pages, no figures. AMSTe

    Uncertainty Relations in Deformation Quantization

    Full text link
    Robertson and Hadamard-Robertson theorems on non-negative definite hermitian forms are generalized to an arbitrary ordered field. These results are then applied to the case of formal power series fields, and the Heisenberg-Robertson, Robertson-Schr\"odinger and trace uncertainty relations in deformation quantization are found. Some conditions under which the uncertainty relations are minimized are also given.Comment: 28+1 pages, harvmac file, no figures, typos correcte

    Binding binding: Departure points for a different version of the perceptual retouch theory

    Get PDF
    In the perceptual retouch theory, masking and related microgenetic phenomena were explained as a result of interaction between specific cortical representational systems and the non-specific sub-cortical modulation system. Masking appears as deprivation of sufficient modulation of the consciousness mechanism suffered by the target-specific signals because of the temporal delay of non-specific modulation (necessary for conscious representation), which explicates the later-coming mask information instead of the already decayed target information. The core of the model envisaged relative magnitudes of EPSPs of single cortical cells driven by target and mask signals at the moment when the nonspecific, presynaptic, excitatory input arrives from the thalamus. In the light of the current evidence about the importance of synchronised activity of specific and non-specific systems in generating consciousness, the retouch theory requires perhaps a different view. This article presents some premises for modification of the retouch theory, where instead of the cumulative presynaptic spike activities and EPSPs of single cells, the oscillatory activity in the gamma range of the participating systems is considered and shown to be consistent with the basic ideas of the retouch theory. In this conceptualisation, O-binding refers to specific encoding which is based on gamma-band synchronised oscillations in the activity of specific cortical sensory modules that represent features and objects; C-binding refers to the gamma-band oscillations in the activity of the non-specific thalamic systems, which is necessary for the O-binding based data to become consciously experienced

    Follow the sign! Top-down contingent attentional capture of masked arrow cues

    Get PDF
    Arrow cues and other overlearned spatial symbols automatically orient attention according to their spatial meaning. This renders them similar to exogenous cues that occur at stimulus location. Exogenous cues trigger shifts of attention even when they are presented subliminally. Here, we investigate to what extent the mechanisms underlying the orienting of attention by exogenous cues and by arrow cues are comparable by analyzing the effects of visible and masked arrow cues on attention. In Experiment 1, we presented arrow cues with overall 50% validity. Visible cues, but not masked cues, lead to shifts of attention. In Experiment 2, the arrow cues had an overall validity of 80%. Now both visible and masked arrows lead to shifts of attention. This is in line with findings that subliminal exogenous cues capture attention only in a top-down contingent manner, that is, when the cues fit the observer’s intentions

    Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles

    Get PDF
    Psychological and neuroscience approaches have promoted much progress in elucidating the cognitive and neural mechanisms that underlie phenomenal visual awareness during the last decades. In this article, we provide an overview of the latest research investigating important phenomena in conscious and unconscious vision. We identify general principles to characterize conscious and unconscious visual perception, which may serve as important building blocks for a unified model to explain the plethora of findings. We argue that in particular the integration of principles from both conscious and unconscious vision is advantageous and provides critical constraints for developing adequate theoretical models. Based on the principles identified in our review, we outline essential components of a unified model of conscious and unconscious visual perception. We propose that awareness refers to consolidated visual representations, which are accessible to the entire brain and therefore globally available. However, visual awareness not only depends on consolidation within the visual system, but is additionally the result of a post-sensory gating process, which is mediated by higher-level cognitive control mechanisms. We further propose that amplification of visual representations by attentional sensitization is not exclusive to the domain of conscious perception, but also applies to visual stimuli, which remain unconscious. Conscious and unconscious processing modes are highly interdependent with influences in both directions. We therefore argue that exactly this interdependence renders a unified model of conscious and unconscious visual perception valuable. Computational modeling jointly with focused experimental research could lead to a better understanding of the plethora of empirical phenomena in consciousness research
    • 

    corecore